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A considerable number of papers published at this time is devoted to the problem of 
linear and slightly nonlinear perturbation propagation. Weak wave propagation was examined 
in [1-4] and propagation of finite-amplitude perturbations was studied in [5-8]. Brief 
surveys of papers published earlier can be found in [2, 9, i0]. 

Results of investigating the dispersion and absorption of weak monochromatic waves 
with the nonstationary effects of mass, momentum, and energy transfer between the phases 
taken into account were first published in [4]. In contrast to [4], the case of moderate 
pressures and moderately small bulk contents of the suspended phase is examined in this 
paper. A more detailed analysis of the results obtained is presented. 

i. Fundamental Equations 

Within the framework of a two-velocity and three-temperaturemodel of a gas suspension 
[ii] in a coordinate system with respect to which the unperturbed gas-suspension is at rest 
(vl0 = v20 = v0 = 0), the linearized plane one-dimensional motion equations can be written 
in the presence of phase transitions in the form 
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where p, 0 ~ ~, v, i are the mean and true densities, the bulk content, the velocity, and 
the specific enthalpy; p, pressure; a and n, particle radius and number per unit volume 
of mixture; 4, specific heat of vapor formation; f, force acting from the gas on an individual 
drop; q~o, intensity of the "heat transfer between the j-th phase and the surface o-layer of 
the dro~ (j = i, 2); the subscripts 1 and 2 denote parameters of the gaseous and suspended 
phases; the primes denote parameter perturbations, and the superscript 0 corresponds to 
the initial unperturbed state. 

We limit ourselves to a consideration of the case of homogeneous suspensions when the un- 
perturbed state is homogeneous inthe coordinate x, i.e.,0~0, 92o, no, a20, a0, p0 = const. 
We assume that the gaseous phase is a calorically perfect gas, the disperse phase is an 
ideal incompressible medium whose linearized equations of state have the form 
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where T is the temperature, c I and c 2 are the specific heat of the gaseous and condensed 
phases (at constant pressure). Furthermore, the subscript 0 is omitted where no confusion 
will result. 
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We shall study the solution of the system of linear equations (i.i) and (1.2) which have 
the form of progressive waves for the perturbations X'" 

Z' N exp i ( k , x - -  ~ t )  = exp (--  k**x) exp i (kx - -  o~t) 

(k, = k + ik**, C~ =o/k,  C~ = d(o/dk, a = 2gC~k**/o). 

(1.3) 

Here i is the imaginary unit, k, is the complex wave number, k** is the linear damping 
factor, Cp, Cg, and a are the phase velocity, group velocity, and damping decrement in the 
wavelength. 

2. Phase Interaction Laws 

The force acting on an individual spherical particle during its nonstationary motion 
can be considered as the sum of the quasistationary Stokes viscous friction, the nonstationary 
Archimedes forces, the apparent masses, and the Bass "hereditary" forces. In the case of 
the harmonic vibrations (1.3), we have [4] 
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where ~ i  i s  t h e  c h a r a c t e r i s t i c  t ime  o f  q u a s i s t a t i o n a r y  v e l o c i t y  d i s t r i b u t i o n  b u i l d u p  in  t h e  
g a s ,  T i s  t h e  p h a s e  v e l o c i t y  r e l a x a t i o n  t ime  f o r  q u a s i s t a t i o n a r y  gas  f low a round  a p a r t i c l e ,  
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T i s  ~he complex  a n a l o g  o f  Tv, and ~ i s  t h e  dynamic  v i s c o s i t y  o f  t h e  gas  p h a s e .  I t  i s  
v 
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f r e q u e n c i e s  ~<iO-2/V,~  , when t h e  v e l o c i t y  p e r t u r b a t i o n s  p e n e t r a t e  t h e  gas  in  t h e  c h a r a c -  
t e r i s t i c  t i m e  o f  t h e  v i b r a t i o n s  ~ = ~ - i  t o  t h e  c h a r a c t e r i s t i c  d e p t h  ~ i ~ ( ~ l / p ~ o )  ~/2 t h a t  

c o n s i d e r a b l y  e x c e e d s  t h e  d rop  r a d i u s  (5~i  >> a ) .  For  h e t e r o g e n e o u s  s u s p e n s i o n s  a >> L 

~I /P~Ci  (L and C i a r e  t h e  m o l e c u l e  mean f r e e  p a t h  l e n g t h  and t h e  speed  o f  sound in  t h e  p u r e  

g a s ) ,  t h e r e f o r e  T~ = a2/LCI>>To (T o = a/xCi i s  t h e  c h a r a c t e r i s t i c  t ime  o f  t h e  v i b r a t i o n s  whose 

w a v e l e n g t h  i s  commensura te  w i t h  t h e  p a r t i c l e  s i z e ) .  An e x t e n s i v e  h i g h - f r e q u e n c y  band 
~<o<<T~ I therefore exists for which the phase velocity relaxation time ~*v is complex, 

depends on the vibrations frequency, and can differ radically from the Stokes time ~v" The 
condition of acoustic homogeneity of the gas suspension is still not spoiled here, and wave 
processes therein can be described by the continual equations (I.i). 

The Prandtl number of the gas is Pr % 1 and the characteristic build-up time of the 
quasistationary temperature field around the drop in the gas phase is TI~ = a2/~, where ~ 
is the gas thermal diffusivity coefficient which is of the same order of magnitude as the 
characteristic build-up time ~ of the quaistationary build-u p time therein. In this 
connection the nonstationarity of the temperature fields around particles or drops that 
results in the dependence of the interphase heat and mass transfer intensities on the 
frequency ~ is manifest at the same vibrations frequencies as the nonstationarity of the 
velocity fields that results in the distinction between ~ and ~v" The thermal diffusivity 
coefficient of the condensed phase <2 is ordinarily significantly less than the coefficient 
~, hence, the characteristic build-up time of the quasistationary homogeneous temperature 
field within the particle ~k2 = a~/~= is considerably greater than the analogous quantity 
for a gas (~X= >> TI~). And at first glance the nonstationarity of the heat transfer of the 
drop surface to its fundamental mass which results in a dependence of the heat flux q2a on 
the frequency, should be manifest for significantly lower vibrations frequencies than the 
nonstationarity of the drop surface heat transfer to a gas (a more detailed analysis [12] 
shows that despite TI2 >> ~i~, the nonstationarity of the temperature within the drop is 
felt in the heat-transfer intensity at considerably higher frequencies than is the non- 
stationarity in the gas phase). 

Dependences analogous to (2.1) for the external q~o and internal q=o thermal fluxes 
on the frequency m follow from the solution of the spherically symmetric problems on the heat 
transfer between a drop and a gas in a monochromatic sound wave and have the form [4, 12] 
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where ~Tj is the complex temperature relaxation time in the j-th phase determined by the 

characteristic time ~Xj and the frequency ~ and k is the heat conduction coefficient. The 

time ~Tj is close to its quasistationary real value rTj for sufficiently, small (each phase 

. ~ = ( I / t 5 )  ~ ,  has its own) frequencies mvl ~ Tvs_ = ( (~ /3~)  *n,,: (~0V~a) < I 0-~ (I ' Ih I " "  I),: z~ ~ ~T~ 
( o ) ~ )  < 1(lull --~ I). 

If a phase transformation occurs on the drop surface, then the surface temperature T o 
is determined by its intensity. The Hertz--Knudsen--Langmuir formula [ii] 

nil  T s -  T~ i - -  r . / - ~ - ~  aC~ ( 2 . 3  ) 

(~2P7Cl %~ 

is valid here, where mo is the temperature "relaxation time" at the interphasal boundary that 
depends on the value of the accommodation (condensation) coefficient ~ and is independent of 
the frequency m, T S is the saturation temperature which is a known function of the pressure, 
u is the pure gas adiabatic index, and r = p ~  

. 

T~ T~, T , ~ -  lea, that are related under acoustic action on a gas suspension. 
use the equation of heat influx to the interphasal boundary in conformity with 

T 1 - -  T ~  T a T 2 T ~  - -  T s 

* * T(I 

, 1 �9 p ? , ,  r>Tq 

Certain Estimates 

Let us execute comparative estimates of the characteristic temperature drops TI_ T~, 
For this we 

(3.1) 

The left side of this equation is proportional to the thermal flux from the gas to the phase 
interfacial surface which assures heat expenditure of the phase transition (the second term 
in the right side) and on a change in the particle temperature (the first term in the right 
side). 

The characteristics times T~I and m~2 used in writing (3.1) differ radically as a rule: 

1~21 i (~i) I~' (3.2) 
14 I=T 77 IT I <<1' 

The smallness of the ratio Ts/IT~zl holds only in definite ranges of the particle size and the 

vibrations frequency that depend on the physical properties of the phases 

where L'-'%JP~ is the molecule mean free path in the gas. Thus, for a mixture of 
steam with 'water drops in a saturated state with p = 1.0 MPa, when %2/%1 ~ 20, I/C~_~8, L ,v 10-s 
we have ~O/IT*21N iO'-(L/a)/11121 . If the drop characteristic dimension is a ~ I0 -s m, then the 

quantity T O for such a suspension is significantly lea than Imo21 only for IN2[ ~ I, i.e., 
when the "internal" heat transfer proceeds under quasistationary conditions (co < i/mx2). 
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Taking account of the estimate (3.2), the heat influx equation (3.1) permits making the 
deduction that the temperature inhomogeneity within the drop (the difference between T 2 and 
T o ) being formed under the action of an acoustic field is small compared to the existing 
temperature inhomogeneity in the gas phase (the difference between T I and T ). The non- 
uniformity of the interphasal boundaries (the difference between T and Ts)~ be observed 

O 
only at high vibrations frequencies or small drop sizes when because of the smallness of 
lq'~l or a the quantity IT*21 also becomes small and approaches ~a (the estimate (3.3)). As 
a rule, characteristic for acoustic field in gas suspensions is ]To--Ts[ << ITo- T21<< 
IT~- Tol. 

If there are no phase transitions, then qlo = q2o and (TI--To)/~*o~ ---(To--T=)/~*~. 
Expressing T o fromthis equation, the heat influx equation for the particles can be written in 
the form 

8T~ T 1 - -  T 2 
~t ~ * ' T T 

�9 ---- 0~ +To2)* ~ * P~% ~2p~ 2 
TT 

(3.4) 

where ~T is the "quasistationary" temperature relaxation time between the phases, and T~ is 

its complex analog. The estimate (3.2) is used here to simplify the expression for T~, and 

in conformity the "internal" nonstationarity of the heat transfer is negligible at any 
frequencies in the absence of phase transitions. 

The results of the analysis performed on the mass, momentum, and heat transfer between 
the gas suspension phases permit the indication of the characteristic frequency bands of the 
acoustic fields at which any approximate theories are applicable. In particular the following 
three fundamental ranges can be isolated: 

o ~< o) << (-4 -~, ,~7~); 

(Tv -112, "fT 1/~) <~ 0i/2 << ('17~'1 I/2, rLl--1/2., , . f~/2);  

( ~--1/2 
(T~ ~ TT, ~ ~ T~). 

The simplest thermodynamic equilibrium theory is applicable in the first, a nonequilibrium 
theory using the approximation of quasistationarity of interphasal transfer in the second, and 
a general nonequilibrium theory taking account of the nonstationary effect of the mass, 
momentum, and heat transfer between phases. Let us note that despite ~X2 >> ~Xi, precisely 
the conditions in the gas phase often determine the upper bound of the frequencies m at 
which the quasistationary scheme of interphasal heat transfer can be used [12]. 

4. Dispersion Dependences 

We later use the following dimensionless parameters that characterize the mixture 
constitution and the physical properties of the phases 

YlRt ' C~ 

(Ri is the gas constant). 

We obtain the following dispersion dependence of the wave number k, on the frequency 
CO: 

(c~k, lco)  ~ ~- v (o)) e (o)),, 

M(1) - -  M (~) A(1) + (~1 - -  l )  A (~) 
V ((ol --- t + m ~ ,  O (~o) = t. + m ~(8) + ~A(~) ") 

U ( , )  i_ ( i  - -  r ) / ( i  + m r ) ,  M (2) = r [ t  - -  r ( icon:)] , :  M (3> = 1 - -  ( t ( o ) : ) , :  

(4.1) 
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from the conditions for the existence of a nonzero solution of the form (1.3) for the system 
of linear equations (i.I)~ (1.2), (2.1)-(2.3). Here V(m) and 8(w) are complex functions 
governed by the particle size and the thermophysical properties of the phases (7z, Cz, Z, 
~,~z, Pj,~ cj, lj, j = i, 2) and which describe the dispersion and dissipative effects be- 

cause of the relative slip of the phases and the nonequilibrium interphasal heat transfer, 
respectively. In the absence of particles (m = 0), the mentioned effects are not observed, 
and in this case V = 8 = i. Let us note that the dispersion relationship obtained in [4] 
and the corresponding ultimately small bulk contents of the suspended phase follow from 
(4.1) upon passing to the limit r + 0, ~2 ~ 0. 

To estimate the relative contribution of terms responsible for the individual relaxa- 
tion processes of the interphasal heat and mass transfer in the function 8(m), the complex 
functions A(Z),A(2),and A (~) comprising it are conveniently rewritten so that the ratios 

* and % that have already been discussed of the characteristic relaxation times ~:i' ~o2' o 

earlier (see (3.2) and (3.3)) would be in them: 

= r{ -- mc~(~%t)[l + [i -- r - 2 (?i -- l) T] ~--~, 2]I, :<'> :5 [(: -~) (5 + m,) 2:1- : * -~ 

,[ "I A. (2) l g~TT~ i Jr = -- --7- :~ 

Tg 2 

[ [ 1]t [ ] - . o �9 * ~ -(~co~r~) 1 + ~  1 +  �9 
A <~ = -~ (.o~.~) t + ~o~ *~ ~J 

In conformity with the estimate (3.2) T~2/T~iJ<<I for any vibrations frequency, hence 

the terms containing this ratio in A(I) and A(3) can be neglected as a rule, as compared with 
one. The influence of nonuniformity of the phase transitions starts to be manifest when the 
ratio To/~2 in A(2) and A(3) that grows with the increase in the frequency m becomes 
commensurate with one (Ira/T$21 ~ i) in absolute value. 

The expressions for the equilibrium C e and frozen Cf sound speeds in the steam-drop 
mixture that are obtained during passage to the limit ~ § = and m + 0 can be written in the 
form 

[ ,2 -~ r (t + 3mr) 11/2 
' " .  c , = c , . ( l  Jr" mr) 2 4` r (i q_ 3m)" j (4 .2)  C, = C1 L (t 4- ~) ~i " 

?e = { i  + i---Zr [(I - r) (~  + m~2)-  271}-',~ 

where 7e is the analog of the equilibrium adiabatic index of a two-phase mixture with phase 

transitions. The frozen velocity Cf is realized in practice (C(m) % Cf) for high (~Tv, 
m~ T >> i) but nevertheless allowable frequencies for this theory ~T C << I. 

The dispersion relationship corresponding to the particular case of no phase transitions 
can be obtained from (4.1) upon passing to the limit t o + ~. In this case V(~) remains the 
same as in (4.1), while 8(w) has a simpler form with a complex relaxation form ~ determined 
in (3.4) : 
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Here c V and Cp are the equilibrium specific heats for constant volume and pressure, Ye is the 
equilibrium aHiabatic index of a two-phase mixture without phase transformations. The ex- 
pressions for the equilibrium and frozen speeds of sound that are obtained from this depen- 
dence during passage to the limits ~ ~ 0 and ~ ~ ~ are in agreement with the corresponding 

2 
expressions (4.2) but with the value of Ye from (4.3). In the frequency 0 < ~ < !0~ /T~I 
considered in [2], the dispersion dependences (4.~ (4.3) agree with the dependences in 
[2]. 

5. Analysis of the Dependences of the Perturbation Propagation 
Velocities and Damping Factor on the Vibrations Frequency 

The characteristic form of the dependences of the phase Cp and group Cg propagation 
velocities of weak perturbations as well as of their linear damping vector k** on the 
frequency of vibration m is shown in Figs. 1-3. The dependences correspond to a steam- 
water mixture of drop structure (a 2 < 0.05) with initial pressure p = 1.0 MPa and are 
constructed in a frequency band satisfying the requirement of acoustic homogeneity of the 
medium (k -I >> a). Different series of curves in each figure refer to different mass contents 
of the condensed phase (numbers near the curves). Different curves in each series are 
constructed for different values of the accommodation factor 6. The solid lines corres- 
pond to the value ~ = 0.04 ordinarily taken for water, to which TO/TV = 6"10 -6 corresponds for 
p = 1.0 MPa, T = Tg(p) and a = 30 ~m; the remaining curves illustrate the degree of in- 
fluence of ~ on the perturbation dispersion and damping: dash-dot lines are frozen mass 
transfer (6 = 0); dashes (x o = ~) are quasiequilibrium mass transfer for (6 = ~); the 
curves corresponding to finite values of T o = T S (to = 0) are within the domain bounded 
by the limit curves ~ = 0 and $ = ~, and tend to it for high and low frequencies, respectively 
(dotted line is ~ = 4"10-4). 

The solid curves are practically in agreement with the dashed curves when ~<<IT~21 
and precisely to the frequencies IN21NI, (~T~)~0 , which corresponds to the values 
~T~ ~I0 The utilization of an assumption about the quasiequilibrium of the mass transfer 
(6 = ~) for high frequencies reduces the phase propagation velocity of small perturbations 
and elevates their linear damping factor. Freezing the mass transfer results in an increase 
in the velocity and a diminution in the linear damping of the perturbations. The functions 
Cg(~) have a tendency to form local extremums for definite vibrations frequencies (dependent 
on the drop content in the mixture). 

Taking, account of the nonstationary effects of interphasal interaction reduces 
to taking account of the differences between ~v, x~1 and T~2 and their stationary analogs, 

which holds for high-frequency perturbations when thinner boundary layers are realized around 
the drops than quasistationary theory yields. Because of this the interphasal transfer pro- 
cesses proceed more rapidly or in more "equilibrium" than by the quasistationary relation- 
ships, moreover with phase shifts with respect to the corresponding thermodynamic forces. 
Consequently, taking account of the nonstationary results in the dropping of the perturbation 
propagation velocity, while the linear damping factor increases. The influence of non- 
stationary effects on the dependence of the phase and group propagation velocities of weak 
perturbations and their linear damping factor on the vibrations frequency is displayed in 
Figs. 4-6. The solid lines are constructed taking into account, and the dashed lines 
without taking into account, the nonstationary effects. The mixture parameters are the same 
as before, and the accommodation factor is $ = 0.04. The influence of the nonstationary 
effects (mainly because of the velocity effects [4]) is felt at the frequencies ~ T ~ = 9 / 2 ( p ~ /  

p~)~v~7>10 -2 , when a difference between T~ and T v starts to appear. 

Let us note the following interesting circumstance. If the nonstationary effects are 
not taken into account, then theory yields such group velocity values Cg(~) as can exceed 
the frozen speed of sound in the mixture Cf ~ CI. The magnitude of the linear damping factor 
here k**(m) ~ const as ~ § ~. When nonstationary effects are taken into account Cg(~) < Cf 
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always, as m § ~ the quantity k**(m) + = as the square root of m. The principal term in the 
asymptotic of k**(~) as w ~ ~ has the form (remainder term is bounded) 

For ~2, r << 1 this formula is simplified 

, ,{3 } 
k** (~) N T m ~ f ~  7 1  y + (71 - -  i)  Pr -1/2 ~f~-~,  

The q u a n t i t i e s  ~ and a a r e  in  t h e  complex f u n c t i o n s  V(~) and O(m) t h a t  g o v e r n  k.,./~ in  
only the form of the dimensionless combinations ~T~I, ~ m ,  ~TZ2, ~ .  We shall call dimension- 
less combinations of this kind the frequency-structural parameters. They characterize the 
ratios between the different relaxation time (T~I, ~i, T~2 N a~, T~ N a) and the period of the 
vibrations. Let us set the gas properties (71, CI, I, p~, ~7, cs, y = i, 2) and let us extract the 

829 



two limit cases when phase transitions are either absent (T = ~) or occur in quasiequilibrium, 
G 

i.e., equilibrium on the interphasal boundary (t o = 0). In both cases the combination ~za is 
not in the dispersion dependence while the remaining frequency-structural parameters are dis- 
tinct from each other only by constant factors. This means that in the limit cases in 
t o mentioned, the dispersion dependence of k,/m on ~ and a is a function of just the one 
!omplex ~a 2, i.e., actually, of just one frequency-structural parameter, for instance, 

= ~v which is the most indicative for gas suspensions. Therefore, for ~T o >> 1 or ~a << 1 
we have 

C(e, ~)=C(ea ~)=C(~) k**(e~ a) =~k**(~),,~=eT,-- 
. - -  8~ I u~ . 

In other words, for frozen ~hase transitions (~ = 0) or their quasiequilibrium progress 
(~ = ~) the dependences Cp(~) and Cg(m) (the dashed and dash-dot lines in Figs. 1 and 2) 
are suitable for arbitrary particle sizes from the domain of allowable sizes (~C << i). 
The non-self-similarity of Cp(~) and Cg(~), i.e., the additional influence of the particle 
dimension a on the last dependences is manifest because of the temperature nonequilibrium 
of the int@rphasal boundaries only in the presence of phase transitions when the difference 
is felt between T O and the saturation temperature T S. This latter does not hold for 
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